LAF: Find Lost Golf Balls Using a Drone, LoRa,
and Computer Vision
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Abstract—Millions of golf balls are annually lost, contribut-
ing to environmental pollution. Although solutions to address
this problem exist, such as the production of environmentally
friendly golf balls, it still carries environmental issues during
the production process and demands the consumption of fresh
resources and energy. Moreover, a substantial impact on financial
decisions is expected when considering an effort to replace all
traditional golf balls with environmentally friendly ones. This
paper introduces an innovative system designed to reduce the
loss of golf balls effectively. The drone, the ultimate output of
this study, is equipped with a Raspberry Pi, a camera, and the
YOLOvV8n model. The coordinates of detected golf balls will be
calculated by the Raspberry Pi on the drone transferred to the
base station through LoRa communication protocol, and finally
uploaded to a server. These data are then presented to the user
as markers on a map. The system utilizes a model optimized
for golf balls to detect and scan the entire golf course using a
drone. It facilitates the retrieval of golf balls by providing the
coordinates for their detection, enabling users to recover them
easily. This paper focused on systematically locating presently
lost golf balls to the maximum extent possible and significantly
reducing the prospective incidence of lost golf balls in the future.
Finally, the system was tested with a prototype on an outdoor
field.

Index Terms—Small-Object Detection, Computer Vision,
LoRa, Wireless Communication, TinyML, YOLOv8n, UAV

I. INTRODUCTION

Golfers lose an average of 1.3 golf balls per round [1],
and the number of lost golf balls is also approaching nearly
300 million annually [2], in cycle with the gradual increase
in the number of golfers [3]. Furthermore, Golf balls which
take 100 to 1000 years to decompose can pose environmental
challenges. Large amounts of zinc were detected in the process
of decaying the golf ball naturally.

Efforts are underway to develop environmentally friendly
golf balls [4] as a solution to these issues. The objective of
that study was to make golfers use eco-friendly golf balls
instead of existing ones. However, replacing the conventional
golf balls completely in use seems impractical and leaves
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Figure 1. Drone’s view and golf ball detection

the environmental problems caused by those already lost
unaddressed. Therefore, the issue of retrieving uncollected
golf balls and the multitude that will continue to disappear
in the future is a highly significant topic in the context of
environmental conservation. This research seeks to explore a
novel perspective by identifying golf balls that are currently
lost or will be lost. In doing so, it will contribute to the
collection of lost or potentially lost golf balls, presenting a
novel approach to the golf field. There is currently no method
other than individuals physically searching for and collecting
golf balls. To confront this challenge, this research proposes
a system called ‘LAF’. It finds lost golf balls and provides a
list of the coordinates of golf balls for collectors to retrieve
them. LAF is composed of three main parts: a drone, a base
station, and a server.

The drone, equipped with a Raspberry Pi 4 model B, a
camera sensor, and an ESP32 [5], is designed to navigate
golf courses and detect lost golf balls. As the drone navi-
gates throughout the entire golf course, photographs of the
golf course are captured through the camera attached to the
drone. Those are then processed through the YOLOvS model
embedded in the drone’s Raspberry Pi attached to the drone,



enabling the detection of the presence of golf balls on the
golf course. If golf balls are detected, the GPS coordinates
of the golf balls are calculated and subsequently stored in the
database. All these processes are carried out automatically,
obviating the need for human labor. Ultimately, users can
access and visualize the locations of golf balls on a table and
map through the website.

This study is dedicated to implementing the drone for
detecting lost golf balls. This minimizes the requirement for
extensive physical exploration, focusing on the coordinates
where golf balls exist. As a result, the number of abandoned
golf balls left in nature decreases, leading to a reduction
in the adverse environmental impact associated with golf
balls. Finally, reducing the economic loss incurred through the
strayed golf balls, such as the need for repurchase, becomes
possible with our system.

II. LITERATURE REVIEW

Biodegradable Golf Ball [4] is one of the solutions that
can ultimately contribute to solving environmental pollution
caused by lost golf balls. While these golf balls address some
environmental concerns associated with traditional golf balls,
their production process, particularly the use of corn starch
[6], is not entirely environmentally friendly. The production
of cornstarch is energy-intensive and its characteristics such
as water absorption and biodegradation, critical for making
biodegradable products, can lead to further pollution concerns
[7]. Additionally, while the application of Polyvinyl Alchohol
(PVA) on sustainable materials, such as biodegradable golf
balls, enhances sustainability through biodegradability [8], it
also raises environmental concerns due to its derivation from
oil and petrochemicals [9]. This aspect of the manufacturing
process has the potential to undercut the eco-friendliness of
the final product.

Contrasting between the system which is to maintain the
use of traditional golf balls and biodegradable golf balls, the
focus here is on a considerably different approach. Instead of
advocating for the complete replacement of traditional golf
balls with biodegradable alternatives, this system emphasizes
the continued use of existing golf balls. This tactic avoids the
environmental challenges accompanied by the production of
biodegradable alternatives. By choosing the current system to
maintain the use of traditional golf balls, the goal is to balance
the environmental considerations with feasible practicality,
ensuring that the impact of golf balls on the environment is
minimized without needing a drastic change in the current
system.

Considering the cost of both traditional and biodegradable
golf balls, it’s evident that maintaining the use of traditional
golf balls offers a practical advantage. Although the end might
result as the final product tending to decompose cleanly [10],
ingredients used during the production of biodegradable golf
balls come with higher production costs, typically around
$35.00 for a pack of dozen [11]. This is in contrast to tradi-
tional golf balls, which are made from cost-effective materials
like hard rubber and durable plastic. The established system of

using traditional golf balls remains more economically viable,
especially considering the cost differences and the established
manufacturing processes for classic golf balls.

YOLO [12] revolutionized object detection by introducing
a new approach. Conventional approaches typically involve
step-wise processing [13, 14], where each object proposal
generated through region proposal undergoes sequential clas-
sification. In contrast, YOLO integrates the bounding box
and classification problems into a single regression problem,
providing a unified approach to address both challenges. This
approach enables YOLO to forecast boundary boxes and class
probabilities for the entire image in a single pass using a
singular neural network, facilitating end-to-end training. This
is referred to as single-stage detection, while the conventional
method that involves multiple stages is termed multi-stage
detection. When YOLO was initially proposed, it demonstrated
significantly faster speed compared to traditional multi-stage
detection models. However, its accuracy was relatively lower.
Nevertheless, Redmon et al. [12] team’s persistent research
and enhancements have led to progressive improvements in
both accuracy and speed. In a recent study by Zhang et al.
[15], YOLO version 4 surpassed the previous state-of-the-art
model Faster R-CNN across various metrics.

III. METHOD

The overview of the overall system architecture and flow
is first provided. Following that, the communication structure
between each microprocessor within the network part is de-
tailed. The fresnel zone about LoRa, the golf ball dataset, the
data augmentation of dataset images, and unit conversion for
actual coordinates of the golf ball are described.

A. System Overview

LAF comprises three components: a drone, a base station,
and a server. The Raspberry Pi 4 Model B and the ESP32
are attached to the drone. The Raspberry Pi is equipped
with a camera and GPS sensor. The drone navigates the golf
course, capturing ground images with the camera at intervals
of 1 second. Simultaneously, the YOLOv8n model on the
Raspberry Pi detects golf balls in the captured images, while
the GPS sensor receives the GPS data of the drone. If a golf
ball is detected, the actual GPS coordinates of the location of
the golf ball are calculated using the relative coordinates of
the bounding box of the golf ball box in the image and the
GPS coordinates of the drone. After detecting golf balls for a
specific duration, the ESP32 embedded in the drone and the
ESP32 within the base station initiates LoRa communication
when reaching a designated altitude threshold. The ESP32
functions as a data transmitter to the base station, sending
the GPS coordinates to the base station. The base station
is composed of an ESP32 module and a Raspberry Pi. The
Raspberry Pi on the base station receives this information by
ESP 32 and forwards it to the cloud server.

B. Internet of Things

Raspberry Pi 4 Model B, which has a quad-core Cortex-A72
processor, is used. The operating system employed is Ubuntu
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Figure 2. System Overview

LAF is comprised of a Drone, a Base Station, and a Web Server. The Drone detects the golf ball and calculates the GPS coordinates for each golf ball.

Subsequently, the ESP32 transmits this data to the base station. This enables users to directly access and review the golf ball’s GPS coordinates.

Algorithm 1 Drone operation Algorithm
1: Input: Drone altitude alt; Drone altitude threshold thr;
Image img; Model output output; Golf ball GPS coordi-
nate coord; Golf ball GPS coordinate list list;

2: Output: Temp file temp;

3: INIT model, camera, GPS, and 12C

4: while system is active do

5: GET drone GPS data

6: if alt is higher then thr then

7: GET img from Raspberry Pi Camera
8: INPUT img to model

9: if detected golf ball from output then
10: CALCULATE coord

11: ADD the coord to list

12: WRITE list to temp

13: end if

14: else

15: SEND the temp to base station

16: end if

17: end while

22.04 Server. The camera utilized is a Lens Board OV5647
Sensor designed for the Raspberry Pi Camera. The Global
Positioning System (GPS) sensor employed is the Adafruit
Ultimate GPS Breakout, characterized by a sensitivity of -165
dBm, 10 Hz update frequency, 66 channels, a 5V compatible
design with a nominal current draw of 20mA, and an internal
patch antenna. The camera interfaces with the CSI port using a
CSI Cable, commonly in the form of a ribbon cable. The GPS
sensor establishes communication through a wired connection
to GPIO pins. As the sensors are integrated with the Raspberry
Pi via wired communication, the data exchange was executed
employing the serial port. Additionally, the incorporation of
LoRa communication is deemed essential in this research. The
dimensions of a golf course typically span between 5 to 6 kilo-
meters. It is noteworthy that conventional Wi-Fi and LTE(Long
Term Evolution) technologies exhibit limitations in providing
coverage across such expansive distances. Considering the vast
expanse of golf courses spanning several kilometers, this study
leverages LoRa network technology. This system can scan

the entire golf course without interference of the distance.
Furthermore, The ESP32 devices on either terminus engage
in mutual communication, affecting data exchange through
LoRa transmission [16]. Subsequently, the transfer of data
between the Raspberry Pi and the cloud server occurs through
the utilization of the HTTP [17] protocol. The storage and
retrieval of data are accomplished through the implementation
of a RESTful [18] APIL

C. Fresnel Zone

LoRa is a physical proprietary radio communication tech-
nique that is affected by the Fresnel zone effect. Due to
the Fresnel zone effect, when a drone communicates with a
base station over longer distances, it requires a higher altitude
[19, 20]. Golf courses typically have lengths ranging from
Skm to 6km, and the width of the Fresnel zone when the
distance between the drone and the base station is Skm can
be calculated using the following formula.

D(in km)
4 x f(in GHz)

Where D = 5 and f = 0.915 [21], the Fresnel Radius is 20.23
meters. This implies that for a golf course with a length of
S5km, communication would only be possible if the altitude is
raised to a maximum of 20 meters, considering the Fresnel
zone effect at a distance of Skm between the drone and the
base station. To account for the Fresnel zone effect, the drone
determines the positions of each golf ball at a low altitude,
saves them locally, and intermittently raises the altitude for
LoRa communication during the round.

Radius(mts.) = 17.31 x (1)

D. Golf ball dataset

To find a lost golf ball with LAF, YOLOv8n was retrained
with both an open dataset and a custom dataset. The open
dataset [23] consists of a total of 2,595 images with 16 classes.
It predominantly comprises images captured from broadcast
screens and pictures obtained through web crawling. It features
golf balls against backgrounds such as the sky, cement roads,
and lawns. To eliminate data unrelated to golf balls, 13 classes
were dropped. Additionally, for three classes with golf ball
images but different class names (e.g., ball, golf, golfball),



Figure 3. Fresnel zone [22]

When two devices communicate with each other over longer distances, it

requires a higher altitude

the class names were modified to ‘golf ball’. The custom
dataset was collected by directly capturing and annotating
images of golf balls in an environment similar to an actual
golf course. It comprises 904 images, shot at a maximum
altitude where golf balls are recognizable in the image and
considered the maximum safe driving altitude to minimize
the risk of collision with people, at 4m. The dataset includes
three classes: golf ball, person, and hydrant. Both datasets
underwent a resizing process to 512 x 512 during the dataset
creation. The distribution of train, validation, and testing was
maintained at a ratio of 7:2:1.

E. YOLO Implementation

Data Augmentation In implementing YOLO for detect-
ing golf balls against the varied green backgrounds of golf
courses, data augmentation techniques were essential [24].
These techniques extended the training data range, ensuring
powerful model training for a variety of scenarios [25]. Among
several augmentation methods, particular emphasis was placed
on adjusting HSV (Hue, Saturation, and Value) parameters.
The decision to focus on HSV adjustment as the primary
augmentation method is supported by observation from Bhat-
tacharya et al. [26]. The research highlights the significant
impact of HSV adjustment on model performance, seeing
a considerable 7% decrease in detection precision for spur
defect scenarios when excluded from YOLOvS’s augmenta-
tions. Additionally, the study by Zoph et al. [27] explored the
efficacy of three distinct auto-augmentation strategies: color
operations, geometric operations, and bbox-only-operations. It
was found that employing color operations solely leads to
an enhancement in performance, marked by an increase of
0.8 in mAP score. This finding highlighted the critical role
of HSV adjustment in enhancing the ability of the model to
accurately identify objects under various lightning and color
conditions, a crucial factor in the context of golf ball detection
in the middle of the complex visual environment of a golf
course [28]. In the HSV color model, the hue component
plays a role in differentiating object characteristics based
on color [29]. When determining the strategy for adjusting
the hue, targeting white golf balls is challenging due to the

color white’s absence of hue. As an alternative strategy, the
hue of the green background was subtly varied, creating a
contrasting backdrop and enhancing the training process. Hue
adjustments, implemented as fractional changes, give slight
color variations in the overall picture. This method not only
changed the grass shades but also diversified visual inputs
during training. Saturation and value adjustments were also
implemented with hue adjustments to enhance the training
dataset. Saturation adjustments are aimed at enhancing color
intensity variance, aiding in distinguishing white golf balls
from the grassy background. Finally, value adjustments were
crucial for adapting to diverse lighting conditions, increasing
the model’s adaptability. These moderate yet precise HSV
adjustments were integral in enriching the training dataset,
enabling the model to efficiently adapt to various environ-
mental conditions, thereby transcending mere performance
enhancement.

F. Unit Conversion

The model outputs the relative coordinates of the golf ball
on the image, representing the center coordinates of the bound-
ing box, each ranging from O to 1. To express these relative
coordinates O = [Tpred, Ypred) . as user-understandable geo-
graphic coordinates for the golf ball’s position, it is necessary
to transform the boundary box coordinate system O to the
Global Positioning System (GPS). The GPS consists of two
numerical values: longitude and latitude, with coordinate axes
aligned with the azimuthal axes. Therefore, to convert the
relative coordinates of an object in the image to GPS, it is
essential to align the coordinate axes in the image with the
azimuthal axes through vector rotation transformation [30].

R(6) — [ sin@]

cosf
The rotation transformation of a vector is accomplished
through the transformation matrix R(6).

cosf
sin @

2

O’ = R(0;ny)O 3)
__|cos® —sinf Tpred
|:Sin 0 cosf } x {ypred} “)
| Tpred COS eimg — Ypred sin aimg (5)
B Tpred sin Hi’mg + Ypred COS Himg

where O’ as rotated coordinates according to the axis of GPS
and 6;,,, as cardinal direction of the image.

Conducting a rotational transformation on the coordinates
enables obtaining O’ = [2/, .4, 9,,..4]" , transformed to align
with the azimuthal axis. Following this, O’ requires conversion
to GPS units for comparison with the drone’s GPS. Calculating
the actual width and height of the image is possible using the
drone’s height from the GPS sensor and the camera’s field of
view (FOV) value. For this purpose, the normalized values are
first converted to the metric system and then transformed back
to the GPS. This ensures that the data is in a comparable state
with the drone’s GPS.

Olmatric - O/ ®© maX(Omatric) (6)



Where © as element-wise multiplication. The total length of
the horizontal and vertical dimensions in the image can be
determined. Multiplying this by the normalized coordinates
yields the transformation of the coordinate values into the
metric system.

AL =111,132.954 — 559.822 cos 2¢ + 1.175cos 4¢  (7)

TTre COS
Al = °_ ®)
180°4/1 — e?sin” ¢
Where ¢ as the latitude, r. as the equatorial radius
(re = 6,378,137m), and e as the eccentricity, with e2 =
0.00669437999014 [31]. Using Equation(7) and Equation(8),

it is possible to convert O/, .. to GPS units.
/! ! Al
O'cps = O'metric @ |:A11al:| (9)
lat

Where @ as element-wise division. Subtracting O’gpg from
the drone’s GPS coordinates allows us to obtain the final GPS
coordinates of the golf ball.

IV. RESULT

The result of the test on the HSV adjustments to check the
influence of Hue, Saturation, and Value on Precision, mAP50,
and mAP50-95 are handled. Following that, the result of the
experiment of LAF’s final prototype in the real world.

A. HSV adjustment test

Before the HSV adjustment augmentations were directly
implemented on our dataset, an experiment was conducted
based on the hypothesis that altering the HSV of the picture
would enhance the efficacy of training the datasets. The
experiment comprised four distinct tests. In the experiment,
each HSV component was adjusted individually in sequential
tests to segregate their effects. Starting with a baseline test
with no HSV adjustments, three consecutive tests applied mod-
ifications to Hue, Saturation, and Value independently. This
methodical approach allowed for a clear assessment of each
component’s influence on the dataset’s training efficacy. As
shown in Table I, compared to the initial test when none of the
adjustments were given, the Hue adjustment alone marginally
improved precision and mAP50-95. When Saturation was
adjusted alongside Hue, there was a further increase across
all parameters. The final test, which included adjustments to
all HSV components, showed a slight decline in precision
but improvements in mAP50 and mAP50-95 compared to the
initial test. These results indicate that Saturation adjustments
were most effective in enhancing mAP50, highlighting its
significance in the overall HSV adjustment strategy.

B. Experiments in real world

In a field covered with grass, the LAF was tested, resulting
in the detection of 22 out of 18 golf balls. The positions of the
detected golf balls can be seen on the map through the web
page, as shown in Figure 4. However, there was an error where
the number of detected golf balls exceeded the actual number.

Table 1
HSV ADJUSTMENT TEST RESULT

HSV Configuration Precision mAP50 mAP50-95
Hue 0, Sat 0, Val 0 0.8196 0.499 0.2762
Hue 0.015, Sat 0, Val 0 0.8241 0.4949 0.2878
Hue 0.015, Sat 0.5, Val 0 0.8289 0.5002 0.295
Hue 0.015, Sat 0.5, Val 0.3 0.8047 0.5767 0.2959

Test results of incremental adjustments in Hue, Saturation, and Value,
measured against Precision, mAP50, and mAP50-95.

Table 11
LI1ST OF GPS COORDINATES

ID Time Latitude  Longitude
51 12-14-2023, 20:44:24  40.42600  -86.90995
52 12-14-2023, 20:44:24  40.42604  -86.90982
53 12-14-2023, 20:44:24  40.42603  -86.90981
54 12-14-2023, 20:44:25  40.42604  -86.90980
55 12-14-2023, 20:44:25  40.42603  -86.90980
56 12-14-2023, 20:44:25  40.42603  -86.90982
57 12-14-2023, 20:44:26  40.42603  -86.90983
58  12-14-2023, 20:44:26  40.42603  -86.90985
59 12-14-2023, 20:44:26  40.42602  -86.90984
60  12-14-2023, 20:44:26  40.42601  -86.90984

Experiment results for the GPS coordinates of lost golf balls, including ID,
time, latitude, and longitude

The reason for this is as follows: firstly, the deep learning
model YOLO used in LAF is an object detection model.
Object detection models [32], unlike object tracking models
[33], cannot inherently determine whether a golf ball has
been detected before. Therefore, LAF distinguishes each golf
ball based on GPS coordinates. However, due to fundamental
accuracy issues with the GPS module and errors in the process
of unit-converting the coordinates of each golf ball, there were
instances where the same golf ball was stored in the database
more than once.

V. CONCLUSIONS
A. Discussion

As a result of the final test, this system detected 22 out of
18 golf balls. There was a problem that it was recognized as

Figure 4. User Interface

The user interface that provides users with the GPS coordinates of the lost
golf ball by displaying them as markers on the map



different, even if it was the same golf ball. This is owing to the
inaccuracy of the GPS module. Moreover, the YOLO model
in this system has undergone an experimental implementation
of a custom data loader. An attempt exploring the use of
a custom dataloader instead of the conventional method of
passing a YAML file when supplying data to the YOLOv8n
model. This is undertaken with the aim of fine-tuning the
preprocessing, including augmentation, to better fit the custom
dataset for the YOLOv8n model. However, the endeavor to use
a custom data loader faced challenges as certain parameters
of the build_dataloder() function provided by YOLOv8 were
not yet developed by the YOLO team.

B. Conclusion

This paper presents the system for detecting lost golf balls
on a golf course using LoRa communication and drawing up
a list of coordinates of golf balls. The drone goes around and
scans the entire golf course to detect golf balls. The Raspberry
Pi on the drone side was successfully implemented to detect
golf balls and calculate the coordinates of golf balls. The
Raspberry Pi on the base station side was implemented to
receive the coordinates of golf balls and deliver them to the
web server on the cloud. The ESP32 attached to the drone
and the ESP32 on the base station have established LoRa
communication. Also, this system is devised to visualize the
locations of golf balls, allowing individuals to easily locate and
retrieve them on-site. It has a notable advantage in utilizing
existing golf balls without discarding them, making them more
environmentally friendly.

C. Future work

Currently, this system is limited to restrictive augmentation.
In the future, upon the completion of the development of
functions offered by YOLOVS, it will be possible to generate a
custom data loader capable of loading and preprocessing data
specific to our dataset. With the implementation of this custom
dataloader, it should be feasible to directly apply augmen-
tations using Albumentations [34] and custom preprocessing
functions tailored to our data. This approach is expected to
yield beneficial outcomes for both the model training process
and the overall performance.

The current progress is limited to displaying the positions
of lost golf balls on a map. Users are required to manually
find and retrieve the golf balls by referencing the map. In
future research, the plan is to further automate the process
by implementing autonomous flight planning to the golf ball
locations and creating a retrieval drone for the recovery of the
golf balls. This will achieve full automation of the process of
finding and retrieving lost golf balls.

Last, in the testing, there is an issue involving the misiden-
tification of a single golf ball as multiple entities. Therefore,
future research is needed to replace the less accurate GPS
module with an improved version and develop a system
capable of recognizing the same golf ball when not precisely
matched to each decimal digit.
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